fs4u

Maths Level 1

Section 5

Working with shape and space

SECTION H 1 Calculating perimeter 86
2 Calculating area 87
3 Calculating volume 89
4 Angles 91
5 Line symmetry 92
6 Tessellation 93
7 Remember what you have learned 94

fs4u

Maths Level 1

Section 1: Working with Whole Numbers
Section 2: Working with Fractions, Decimals \& Percentages
Section 3: Working with Ratio, Proportion, Formulae and Equations
Section 4: Working with Measures
Section 5: Working with Shape \&
Space
Section 6: Working with Handling
Data
Section 7: Working with Probability
Section 8: Test preparation \& progress track

H Working with perimeter, area and volume

You should already know how to:
\checkmark read, measure and compare metric units of length.
By the end of this section you will know how to:

- work out the perimeters of simple shapes
- work out the areas of rectangles
- work out volumes of simple solids, such as cuboids
- identify acute, right and obtuse angles
- identify lines of symmetry on a shape
- identify shapes which tessellate.

1 Calculating perimeter

Learn the skill

The perimeter of a shape is the distance
all the way around its boundary.

Example: What is the perimeter of the shape?

Add all the side lengths: $8+3+8+3=22 \mathrm{~cm}$ Answer: 22 cm

Remember

Perimeter is a length, measured in units such as kilometres (km), metres (m) or centimetres (cm).

Try the skill

1. Work out the perimeters of the following shapes.

2 Calculating area

Learn the skill

Area is a measure of the amount of surface a shape has.
The rectangle is made up of eight unit squares.
Each unit square measures 1 cm by 1 cm and its area is $1 \mathrm{~cm}^{2}$ or 1 centimetre squared.
The area of the rectangle is $8 \mathrm{~cm}^{2}$.
There are 4 columns and 2 rows: $4 \times 2=8 \mathrm{~cm}^{2}$
The area of a rectangle $=$ length \times width.
Example 1: A rectangular garden is 9.8 metres wide and 20 metres long. What is the area of the garden?

First, identify the length (20 m) and the width (9.8 m).
To fi nd the area, multiply the length by the width:
$9.8 \times 20 \mathrm{~m}^{2}=9.8 \times 2 \times 10 \mathrm{~m}^{2}=19.6 \times 10 \mathrm{~m}^{2}=196 \mathrm{~m}^{2}$
Answer: $196 \mathrm{~m}^{2}$
Example 2: A gardener wants to reseed a client's lawn. The lawn is a rectangle 18.75 metres long and 8.59 metres wide. What calculation can he do to roughly work out the area of the lawn?

First, round the length and width to the nearest whole numbers. For a rough estimate, 20 m and 10 m will be 'good enough'.
18.75 rounds up to 20 , and 8.59 rounds up to 10 .

Area is calculated by multiplying length and width.
Answer: 20×10

Remember

Centimetre squared is sometimes written as square centimetres. cm^{2} is the abbreviated form.

Tip

Length is the longer horizontal dimension.
Width is the shorter horizontal dimension. Height is the vertical dimension.

Remember

Area is measured in two dimensions, so it is always measured in square units, such as cm^{2} or m^{2}.

Tip

To multiply a number by 20 , multiply first by 2 and then multiply the result by 10 .

1. Find the area of each of these rectangles.

2. A window is 50 centimetres high and 2 metres long. What is its area?
3. A corridor is a rectangular shape of length 8 metres and width 1.5 metres. Find its area.

Tip

First change units so that both measurements are either in centimetres or metres - you decide which is easier for you!
4. A carpet layer is ordering new carpet for a living room. The fl oor of the room is 5.92 metres long and 3.74 metres wide. Which two numbers should he multiply together to work out an approximate area of the floor?
5. The front of a house is being repainted. The front is rectangular in shape and is 12.18 m wide and 14.8 m high. What is the approximate area that will be repainted?
6.

Jonathon is designing a rectangular path for his garden using paving stones.
The paving stones are square in shape and are 50 cm wide. If the path is to be 8 m long and 1 m wide, how many paving stones will Jonathon need to buy?

3 Calculating volume

Learn the skill

Volume is the amount of space taken up by a
three-dimensional (3-D) shape.

In this cuboid there
are $6(=3 \times 2)$ cubes.
Each cube measures 1 cm by 1 cm by 1 cm so its volume is $1 \mathrm{~cm}^{3}$, or 1 centimetre cubed.

The volume of the cuboid is $6 \mathrm{~cm}^{3}: 3 \mathrm{~cm} \times 2 \mathrm{~cm} \times 1 \mathrm{~cm}=6 \mathrm{~cm}^{3}$.
The volume of a cuboid $=$ length \times width \times height.

Example 2: A box has length 5 cm , width 2 cm and height 4 cm . What is its volume?

First, identify the length (5 cm), the width (2 cm), and the height $(4 \mathrm{~cm})$.
volume $=$ length \times width \times height
$5 \times 2 \times 4=40 \mathrm{~cm}^{3}$

Remember

Centimetre cubed is sometimes written as cubic centimetres.
cm^{3} is the abbreviated form.

Remember

Volume is measured in three dimensions, so it is always measured in cubic units: cubic millimetres $\left(\mathrm{mm}^{3}\right)$, cubic centimetres $\left(\mathrm{cm}^{3}\right)$ or cubic metres $\left(\mathrm{m}^{3}\right)$.

Remember

A cuboid is the mathematical name for a box. A cube is a special type of cuboid: its sides are all the same length.

Tip

Volume is the amount of space a solid takes up, whereas capacity is the maximum amount a container can hold.

This cube has a volume of 1000 cm 3 and can hold a capacity of 1 litre.

Try the skill

1. What metric unit would you use to
measure: a the volume of a cardboard box
b the volume of a swimming pool
c the amount of water in a swimming pool?
2. What is the volume of this cube?

3. Find the volume of these cuboids.

a \qquad
b \qquad
4. An ice cube has length, width and height of 3 cm . What is its volume?
5. The dimensions of a room are:
length 8 metres, width 5.5 metres, height 3 metres. What is the volume of the room?
\qquad
6. A brick is 20 cm long, 10 cm wide and 8 cm high. What is its volume?
\qquad
7. A fish tank is 30 cm long, 20 cm wide and 40 cm high. How much water can it hold when it is full to the top?
\qquad
8. A tall city building is 160 m high, 20 m from side to side and 15 m from front to back. What is the volume of the building?

4 Angles

Learn the skill

Where two lines meet, an angle is formed.

Angles are measured in degrees.
The angle on the floor between two walls in the corner of a rectangular room is called a right angle.

A right angle is the same as 90° and is also a $1 / 4$ turn.
Two right angles make a $1 / 2$ turn.
Two right angles equals 180°.

Example 1: This is

 the floor plan for a new office. Mark in all the right angles between office walls. Note where the corners are.

Angles which are less than 90° are called acute angles.
Angles which are more than 90° but less than 180° are called obtuse angles.

Example 2: This is hexagon or a 6-sided shape. a. Which angles are acute?
b. Which angles are obtuse?
a. \mathbf{B} is acute.
b. A and \mathbf{C} are obtuse.

Remember

The symbol for degrees is ${ }^{\circ}$

5 Line symmetry

Learn the skill

A shape has line symmetry if it can be folded in half so that the two halves exactly match one another. The fold line that is made is called the line of symmetry.

Examples: how many lines of symmetry do these shapes have? Draw them in.

rectangle

2 lines of symmetry

square

equilateral triangle

3 lines of symmetry

Try the skill

1. Identify the number of lines of symmetry for each shape and draw them in.

2. Many species in nature have line symmetry. Draw in the line of symmetry for these species.

B

3. The diagram shows the aerial view of a corner cabinet for a kitchen.
Draw in any lines of symmetry.

6 Tessellation

Learn the skill

If identical shapes can slot together without leaving any gaps the shapes are tessellate.

When you tile a wall, you are tessellating with the tiles - you certainly do not want to leave any gaps in between tiles!

Examples:

rectangles tessellate

hexagons tessellate

circles do not tessellate because there are gaps in between

Try the skill

1. Identify which shapes tessellate.
A
B

C

D

Challenge question!

2. Copy the T -shape below at least 10 times onto squared paper.

Cut out the shapes and see if you can tessellate them.

7 Remember what you have learned

First complete this

The \qquad of a shape is the distance all the way around its boundary.
\qquad is the amount of space taken up by a shape.

The area of a rectangle $=$ \qquad \times \qquad
\qquad is the amount of space taken up by a three-dimensional (3-D) solid.

Tip

If a question gives dimensions in different units, convert them so that all the units are the same before you work out perimeter, area or volume.

The volume of a cuboid $=$
\qquad \times \qquad \times \qquad .

Try the skill

1. A rugby pitch measures 200 metres long and 90 metres wide.

What is the area of the pitch?
A
$\square 290 \mathrm{~m}^{2}$
B

C $380 \mathrm{~m}^{2}$

D \square $1800 \mathrm{~m}^{2}$
2. A woman wants to gravel over her garden. She estimates the garden to be 8.4 metres long by 7.5 metres wide.
What is the approximate area of her garden?
A \square
B \square $56 \mathrm{~m}^{2}$

C
 $58 \mathrm{~m}^{2}$

D \square $70 \mathrm{~m}^{2}$
3. In a house, the kitchen floor is 6 metres long by 5 metres wide. The floor area is calculated to be 30 units.

What is the unit for the floor area?

$\mathrm{A} \square \mathrm{m}$
$\mathrm{B} \square \mathrm{m}^{2}$
c

$\mathrm{D} \square \mathrm{cm}^{2}$
4. This diagram shows a water container. What is the volume the container?

Tip

A litre is the same as $1000 \mathrm{~cm}^{3}$

A $\square 55 \mathrm{~cm}^{3}$
B $\square 500 \mathrm{~cm}^{3}$
C \square $755 \mathrm{~cm}^{3}$

D \square $5000 \mathrm{~cm}^{3}$
5. A second water container has a capacity of 5000 cm^{3}. What is $5000 \mathrm{~cm}^{3}$ in litres?

A
0.51

B

C $\square 50$ I
D $\square 500$ I

7. A man wants to put new carpet on the floor in his office. The floor is 6.92 metres long and 4.84 metres wide.
Which of the following calculations should he use to find a quick estimate of the area of the floor?

9. A rectangular area in a garden is to be paved for a patio.

What is the area to be paved for the patio?
10. How do you work out the correct volume of this box?

A $\quad 6 \times 4$
B $\square 6 \times 5$
C $\square \times 4$
$\mathbf{D} \square 7 \times 5$
8. The diagram shows a cardboard box used to package perfume. The box is a cube of side length 10 cm .
What is its volume?

A

A \square
Add 12, 15 and 20 together.

B \square Add 12, 15 and 20 together, then multiply by 2 .

C \square Add 20 to 15, then multiply by 12 .

D \square Multiply 20 by 15 by 12 .

